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Convergence of a Shock-Capturing Streamline 
Diffusion Finite Element Method for a 

Scalar Conservation Law in Two Space Dimensions 

By Anders Szepessy 

Abstract. We prove a convergence result for a shock-capturing streamline diffusion 
finite element method applied to a time-dependent scalar nonlinear hyperbolic conser- 
vation law in two space dimensions. The proof is based on a uniqueness result for 
measure-valued solutions by DiPerna. We also prove an almost optimal error estimate 
for a linearized conservation law having a smooth exact solution. 

1. Introduction. In this note we continue the analysis of shock-capturing 
streamline diffusion finite element methods (SC-metods for short below) for hy- 
perbolic conservation laws initiated by Johnson and Szepessy [6], [7], where con- 
vergence for Burgers' equation in one dimension was proved using the theory of 
compensated compactness. We prove here strong convergence in L?C for a SC- 
method with piecewise linear elements applied to the following scalar conservation 
law in two dimensions: 

2 
(1.la) 2 ~~~~a 23 

(l.la) Ut + EO+ fi(u) = O in R2 x R+ _ R+, 
i= 1 

(1.lb) u(x, O) = uo(x) for x ER2, 

where the fi: R -, R are given smooth functions and we assume that the initial 
data uo E Lo (R2) have compact support. The convergence result is obtained using 
a uniqueness result by DiPerna [1] for measure-valued solutions by proving that the 
finite element solutions are uniformly bounded in Loo, weakly consistent with all 
entropy inequalities and strongly consistent with the initial condition. We also show 
that the accuracy of the method when applied to a linearized conservation law is 
at least &(h3/2), where h is the mesh parameter. 

The streamline diffusion method is a general finite element method for hyperbolic 
problems which may be viewed as a certain combination of the standard Galerkin 
method and a least squares method. In the shock-capturing streamline diffusion 
method an artificial viscosity is added, with viscosity depending on the residual 
of the finite element solution and a certain mesh-dependent parameter (here the 
residual means the result of the hyperbolic operator applied to the finite element so- 
lution). The shock-capturing streamline diffusion method combines <(h3/2) accu- 
racy (in the case of piecewise linear elements) with good stability obtained through 
the least squares control of the residual and the shock-capturing artificial viscosity. 
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For more information on streamline diffusion finite element methods we refer to 
Hughes and Mallet [2], Johnson et al. [4] and the references therein. An extension 
of the convergence result of this paper to include also boundary conditions is given 
in [9]. 

The shock-capturing artificial viscosity coefficients in this paper differ from those 
in Hughes and Mallet [2] and Johnson et al. [7], where the artificial viscosity was 
normalized by dividing by the gradient of the approximate solution. We compensate 
by using here a smaller mesh-dependent parameter in the coefficient of the artificial 
viscosity. This makes no essential difference in the convergence proof for nonsmooth 
solutions, but makes it possible to easily prove that the error for a linearized version 
of (1.1) is of the desired order &(hk+l/2) in regions where the exact solution is 
smooth, when using elements of order k. 

An outline of the paper is as follows. In Section 2 we give some background 
on Young measures and state the uniqueness result for measure-valued solutions 
satisfying entropy conditions. In Section 3 we introduce the SC-method and in the 
main Theorem 3.1 we prove that the finite element solutions Uh converge strongly 
in Ll7C, 1 < p < oo, to the unique LOO-solution u of (1.1) as the mesh parameter 
h tends to zero. The proof is divided into Lemmas 3.1-3.3, which are proved in 
Sections 4-6. In Lemma 3.1 we prove that IIUhIJIL. is uniformly bounded in h 
by proving Lp-estimates and letting p tend to infinity as in [7] in the case of one 
space dimension. In Lemma 3.2 we prove that the Young measure associated with 
Uh is a weak solution and satisfies all entropy inequalities corresponding to convex 
entropies. Finally, in Lemma 3.3 we prove convergence towards initial data as h 
tends to zero by combining weak convergence and L2-stability. In Section 7 we 
prove error estimates for the SC-method applied to a linearized version of (1.1) 
with smooth solution, thus demonstrating that the shock-capturing modification 
in the SC-method does not degrade the accuracy for smooth solutions. We shall 
denote by C a positive constant not necessarily the same at each occurrence and 
always independent of h. 

2. Measure-Valued Solutions. In this section we give the necessary back- 
ground material on Young measures and measure-valued solutions of conservation 
laws following [10], [11], [1]. Our convergence result is based on Theorem 2.2 below. 

THEOREM 2.1. Let uj be a uniformly bounded sequence in L (R3), i.e., for 
some constant K 

(2.1) IIUjIILo,(R3) < K, j = 1, 2,3,. 

Then there exists a subsequence (again denoted) uj and a family of measurable 
probability measures v. E Prob(R), y E R+, such that supp v. is contained in 
{x E R: lxl < K} and the Loo weak-star limit, 

(2.2a) g(Uj(.)) 9() 

exists for all continuous functions g, where 

(2.2b) 9(y) = f g(A) dvv (v_ , g(A)) 
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for almost all points y E R3. Here, v. being measurable means that (vp, g) is 
measurable with respect to y for each continuous function g. 

COROLLARY 2. 1. The sequence uj in Theorem 2.1 converges strongly to u if 
and only if the associated Young measure v. reduces at almost all points y to a 
Dirac measure concentrated at u(y), i.e., 

(2.3) vv = 6u(y) . 

Since uj is uniformly bounded in Lo (R3), strong convergence in L'?C for some p, 
1 < p < oo, is equivalent to strong convergence in L'OC for all q, 1 < q < oo. 

We can now define the measure-valued (mv) solution of (1.1) introduced by 
DiPerna [1]. 

Definition. A measurable map v: y -- E Prob(R) from the domain R+ is a 
mv solution of (1. la) if 

a 
~~~2 

(2.4) a(vv,A) + E (MY fi(A)) = 0 in ?4'(R) 

i.e., in the sense of distributions on R+ 

J|~ (st (Vy, A) + E(vv fi (A)) xi) dxdt = 0 

for all EW ol (R3) Further, a mv solution v of (1.la) is admissible if 

2 

(2.5) a(vt q rj(A)) + (vv, qi (A)) < 0 in -2'(R3), 
i=1 

for all convex entropy pairs (j, q) = (7,q ql, q2)- 

We recall that (rj, q) is a convex entropy pair if the entropy r: R -- R is continu- 
ous and convex, the corresponding entropy flux q = (ql, q2): R -- R2 is continuous 
and all Fl-solutions u(x, t) of (1.la) satisfy the additional conservation law 

2 

(2.6) (U) + 
a 

qi (u) = 0 in 2'(R3). 

For smooth , (2.6) holds if and only if 

771fi = qi,l i = 1,2, 

which means that every convex smooth function rj(u) forms an entropy pair (rj, q) 
provided that the corresponding entropy flux q = (ql, q2) is defined by 

qj(u) = j ri'(s)f'(s) ds, i = 1, 2. 

We recall that the classical admissibility condition for a solution u to (1.la) reads 

a2 
(2.7) Ur1(u) + q a q,(u) < 0 in 2'(R+), 

for all convex entropy pairs. The basic existence and uniqueness result for the 

Kruzkov LOO-solution u to the scalar conservation law (1.1), see [8], reads as follows: 
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If uo E L1(R2) nL Lo(R2), then there exists a unique function u E Loo(R+) which 
satisfies (2.7) for all entropies rik of the form rk(A) = IA - kI, k E R, together with 
the initial condition 

liM oII(u, t) - UOLi (R2) = 0. 

The following result [1, Theorem 4.2 and Remark 3] gives an extension of the 
Kruzkov uniqueness result to measure-valued solutions. 

THEOREM 2.2. Suppose that u0 E L1 (R2) nLoL (R2) and that v is an admissible 
mv solution of (1.la) generated by a uniformly bounded sequence uj in Loo(R3), 
such that for some constant C 

(2.8) fR| ?A0) dx < 
R2 

(2.9) tliBm+ t vv 
Jo 

- 
2(/ >uo(x) ) dxzdt = O. 

Then v is the Dirac solution v = bu(v), where u is the unique LOO-solution of(1.1). 

According to Corollary 2.1 we then have uj -- u strongly in L1?C, 1 < p < x0. 

3. Formulation of the Method and the Main Theorem. In this section we 
formulate the SC-method and give a basic L2-stability result and some interpolation 
estimates, which will be used below. 

The SC-method is based on a space-time finite element discretization of R+ 
defined as follows. Let 0 = to < t1 < t2 < < tN = T be a sequence of time 
levels with tn+1 -tn h, set In = (tn, tn+1) and introduce the "slabs" Sn = R2 xIn 

and the sets R2 = R2 x Nt}. Let Th be a quasi-uniform triangulation of R2 into 
n 

triangles K with one right angle (cf. Remark 3.1), smallest angle uniformly bounded 
away from zero and diameter hK h. For each K E Th,let the prism K x In be 
divided into three tetrahedrons 

T(K, 1) = feab, T(K, 2) = decb, T(K, 3) = abce, 

according to Figure 3.1, and form the corresponding "triangulation" Th = {T(K, i), 
i= 1, 2,3, VK E Th} of Sn into tetrahedrons. 

e 

C d 

a K b 

FIGURE 3.1 
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Remark 3.1. The requirement that the triangles K e Th have one right angle 
is technically convenient when proving Lemma 4.2 and Proposition 5.3. We expect 
these results to hold also for a more general triangulation of R2 x R+. In [9] we 
prove the corresponding results for a general triangulation of R x R+. 01 

Define 

Vn {v E H1 (S): Vl K E PI (K) VK E Th VlR3\Q+2M =?} 

= {(x, t) E R3: IxI < s+ts'}, s,s' > 0, 

Th= UTh 
n>O 

where P1 (K) denotes the set of linear functions on K, R = max{ lxi; x e supp uo} 
and M is a positive constant to be defined below. In other words, Vhn consists of 
continuous piecewise linear functions on the slab Sn which are zero for large lxl. 

We shall seek an approximate solution Uh in the space Vh HnV=O,h, i.e., 
for n = 0,1,2,... , N we will have UhIs,n E Vhn. Note that the functions in Vh 
are continuous in x and possibly discontinuous in t at the discrete time levels tn. 
The SC-method for (1.1) can now be formulated: Find Uh E Vh such that for 
n = 0,1, 2, ... 

fJ L(Uh) (V+ (Vt +?fV (Uh)V )) IR2u U 

(3.1) +| f e(U")VU" Vvdzdt 

+ f x2(U)VzU' * Vvvdxdt = 0Vv EVh, 

where 
2 

L(Uh) = uth + (iU)i 
i=1 

e3 Uh1 = 6L(Uh)I(1 + 1fv(U)I + Ifd(Uh)I) 

e2(Uh) = jUhd 

v?(., t) = lim v(., t +s), 

U( t| {(U+U_)()l nR2if f dzx>O0for K eTj11 

w eotherwise, 

2 

i=l 

vw . t= Wtt + VE w .Uh)v, 

and the positive parameters 6, I, 6Uh6 satisfy 

(3.2) ~~~~h/S +0and 6/h1~-6 0 as h-0,V6> 0, 

(3.2) = 

6- = Ch =, 6 =C h 2, 

where 23 <CE1 <2, 2 <&2 <1. 
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Existence of a solution to (3.1) follows from a variant of Brouwer's fixed point 
theorem as in [5]. From now on, U = Uh will denote a solution of (3.1). Our main 
result is the following 

THEOREM 3.1. The solutions Uh of (3.1) converge strongly in LlOC(R+) for 
1 < p < oo to the unique L -solution of (1.1) as h tends to zero. 

The proof is divided into three steps: Lemmas 3.1-3.3. 

LEMMA 3. 1. There is a constant C such that the solutions Uh of (3.1) satisfy 

IIuh IIL.(R3) < C, 0 < h < 1. 

LEMMA 3.2. There is a subsequence of the solutions Uh of (3.1) that gene'rates 
an admissible mv solution v of (1.1). 

LEMMA 3.3. There is a constant C such that the mv solution v in Lemma 3.2 
satisfies 

|(v.y JAI) dx < C 
R2 

and the initial condition 

lim tf(vI A - uo(x) ) dx dt = 0. 

Theorem 3.1 now directly follows by combining Lemmas 3.1-3.3, Theorem 2.2 
and Corollary 2.1. 

Next, we give the following basic L2-stability result obtained by taking v = Uh 
in (3.1): 

N 

JR| 1 ( U_ ) dx + J -U) dx + 26 J (L (U))x dxdt 

(3.3) + 2f El(Uh)IVUh12 dxdt +21 E2(Uh)IV,Uhl2dxdt 
SN SN 

< (uO)2 dx, 
R2 

where SN - UN 0 Sn and integrals over SN are interpreted as a sum of integrals 
over the Sn. 

We shall need the following standard interpolation error estimate (3.4), 
"superapproximation" result (3.5) and inverse estimate (3.6), where 7rw e Vh is 
the usual piecewise linear interpolant of a function w C Iln>oW(Sn). A proof of 
the superapproximation result is given in [7]. 

LEMMA 3.4. There are constants C such that for w E W8'P(w)nW(sn), V E Vh, 

n = 0,1,12 ... .. 

(3.4a) llw - 7rwllwk,(,) < Ch8k IwIIws ,(w)X s = 1,2, k = 0,1, p =o, 

(3.4b) llw - 7rwllHk(,) < Ch2-kII w I,J(w^), k =0,1, p= 2, 

(3.5a) lIvw - 7r(vw) Ilwk,o(,) 

< ChlkIIVIILo(w)IIwIIWI,o(w), k = 0,1, p =x, 
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(3.5b) 
llvw- 7r(vw)IlHk(W) 

(3.5b) 
~< Ch' -k 

|| V ||Lo.>(w) ( ||W ||Hl (w) + h ||w || 2 , , )k =O0,l, p= 2, 

|)VW - lr(vw)IIL2(R2) 

?< Ch'2 IIVIILOO(SO)(IIWIIH1(Sn) + hjjwIIH2(S))n p = 2, 

(3.6a) IIVvI L,(w) < Ch'1VIILp(w), 1 < p < x0, 

(3.6b) IIV11L.(Sn) < Ch 312IIvIIL2(sn) p = 2, 

where w = R2 Sn, KfnR2 or Kn Sn for K E Th, and W8'P(w) is the usual Sobolev 

space (here dot denotes seminorm and W1'2 = H2). 

4. Proof of Lemma 3.1 (The LOO-Estimate). In order to prove the Lo- 

estimate of Lemma 3.1, we shall need the following two preliminary lemmas. 

LEMMA 4. 1. There are positive constants c and C independent of p such that 

for p =2m, m =1, 2,3,..., and n = 0, 1, 2,.... 

ch J 
_KnR U + UI IVU+V 2I1U++Ilp&2(KnR ) dx 

< / IUIVxU Vx(r(UP-1))dxdt, 

ch | U+-U_jVxU+ Vxv+ dx < | I 
IUxU Vxvl dxdt 

R2S 

< Chf IU+-U-IlVxU+ Vxv+ldx VveVh. 
R2 

The proof of Lemma 4.1 is a simple combination of the proofs of Lemmas 4.1-4.2 

in [7]. 

LEMMA 4.2. There is a constant c > 0 independent of p such that for p = 2m, 

m 1,2,3, ..., and n = 0, 1,2,... 

/ Ei(U)VU* Vr(UP1) dxdt > p2 E J Ei(U)IVUI2IIUIIjjpK) dxdt. 

Proof. Consider a tetrahedron K e Thn. Since 

VU * Vwr(UP1)I K and IVUI2IIUIIPL(K) 

are constant on K, it is sufficient to prove that 

'VU * V7r(UP 1) > 2 1|VU1211UIlpL (K 

Define the function fp: S3\{? (1, 1,1, 1)} R by 

fp(Yl, Y2, Y3, Y4) 

(Yi -2)(Y1 -Y ) + (Y- Y3)(Yp' - yP-) + (Y3 - Y)(YP Y- 

2- + (y )2 _ )2)MaX(yp-2 yp-2 yp-2 p-2) (YI 2 - m3 + J3 -y4JJn\1 Y2 Y3 y4 

(Yi - Y2)2 >p-2 yp-2-i'y + (Yl - Y3 )2 EP'02 y7-2i iyi + (Y3 - Y4 )2 Z-2 Y4p-2-i y 

((Yi Y2 )2 + (y1-3 )2 +(3_y4)2) max(yp2, Yp2 y YP2) 
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We note that fp is continuous on S3, and after an appropriate choice of coordinate 
directions we get by the definition of fp 

VU V7r(UUP ) > if fp(Y)IVU1211UIIp (K). 

We have 
1 (YI - Y2 )2(Yp-2 + p-2) + (Y1 - y3)2(yp-2 + yp 2) + (Y3 - Y4)2(yp + p) 

- 4 ((yl-y2)2 + (y-3)2 +(y3 y4)2) max(yp-2, yp-2 yp-2 P-2) 

Let us first assume that Iy IP2 = maxl<i<4(y- 2). If (y-y2)2 +(y-y3)2 > 1/p2, 
then we clearly have 

(4.1) fp (y) > C/p2. 

In the case (Yi - Y2)2 + (Yi - Y3)2 < 1/p2, we have 

(4.2) = - Yi > exp (2( 2)) c i23, 

so that 
I1 Y p 2(Yi - Y2 )2 

4 YJ (Yi -Y2)2 + (y1 -y 3)2 + (Y3 _Y4)2 
1 Y3 p -2 (Yi - Y3) + (Y3- Y4) 

4 + y, (Y1 - Y2)2 + (Y1 - Y3)2 + (Y3 -4)2 

which proves (4.1). 
Next, we consider the case IY2 Ip-2 = maxl<i<4(jYIylp-2). If IYl - Y21 ? l/p, then 

(4.1) follows directly, while if Iy - Y21 < l/p, then we have as in (4.2) 

>1 (y1 /y2)Pp2 ((y1 -y2)2 + (Yi- 3)2) + (y3/y2)P-2(3 - J4)2 
4 (Y - Y2)2 - Y3)2 + (Y3 - Y4)2 

>1 c((y1 - Y2)2 + (Y - Y3)2) + (Y3/Y2)p2 (Y3 - 

-4 (Yl(-y2)2 + (Y1-Y3)2 + (Y3- Y4)2 
If now IYl - Y31 > 1/p, then (4.1) holds, and finally, if IYl - Y31 < l/p, then we 
have IY3 - Y21 < IYl - Y21 + IYl - Y31 < 2/p, and as in (4.2) we obtain (4.1). By 
symmetry, this proves (4.1) for all y e S3. 0 

Taking now v = 7r(UP-1) in (3.1), where p is an even integer greater than 2, we 
get 

0= f L(U)UP-l dxdt+f (U+ - U_)(U+)P-1 dx 
Sn 2n 

- L(U)(UP- -r r(UPl)d t- (U+ -U_ (U+-1-tU-)d 
Sn Rn 

+ 6 f L(U) ((UP-1)t + > f(U)(UP1)j) dx dt 

- 6 A L(U) ((UP-1)t - r(UP-l)t + f '(U) ((UP-)i - ir(UPl)xi)) dx dt 

+ j ei(U)VU Vir(UP-l)dx dt 
Sn 

8 

62(U)VXU Vxr(UP 1)dXdt 
n 
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Using the standard interpolation estimates (3.4) and the stability estimate (3.3), 
we have 

IE31 + IEI < Cp2h(h +6) K I+ If(U)I IVU12IUI3 

CEn6 hh IKl{ UI} L(U)IVU I K) 1 d 

+ Cp2 f| el(U)IVU12 dxdt = In + IIn, 
6 n 

where by Lemma 4.2 

CIn p < el ei(U)VU. Vw(UP-)dxdt, 

and by (3.3) 

N 

1j IIIn I< Cp2 h/6. 
n=O 

Further, using (3.3) and Lemma 4.1, we have 

EEnj? < Cp2h2 e jU+ _ U_ IVXUI2 IUIIIjKnRp)d3 

< Cp2h2 KET~ IKfl{IUI} IU+ U-I IVXUI2IIU jL,(KnR2) dx 

+ Cp2 h2 ffIU+_U_ }I IVxU2 dx 
Rn2n(IU<l} 

? Cp4hj IUIVxU Vxlr(UP-1)dxdt+Cp2hJ I&I IVXUI2dxdt. 
Sn Sn 

With the aid of these estimates we get by summation over n = 0, 1, 2,. . ., N for 

p4 < C min(6/(h6), 6/h) 

N 

|(U_)P dx - |(U+)P dxz-| (U_--U+)p(U+)P-1 dx 
n= 2 + 2 R2 

+ 6p(p- 1) (L(U))2U 2dxdt Op3 + 
SN 

Using now the convexity of the function U UP, we have 

11U- ILP(R2+ ) + 6p(p -1)1 (L(U))2UP-2 dx dt 

< IIU0IIPL(R2) + Cp3(h/6 + h6/6). 
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The next step is to obtain Lp-estimates for all t E (0, o). As in [7], we have for 
tn < t < tn+l 

ftn+1I 

||U(, t)IILP(R2) = IIU IILp(R 2) -P t |1UtUP1 +ZfZUP1 U. dxdt 

< IIU_IKLP(R2 ) Lp (f (L(U))2UP2dxdtf f UPdzdt) 
ftn+ 1~ ~ ~ ~ ~~n+1 / _ 11 - IIPp(R 2+1 ) + Ep(P1 (L(U) )2Up -2 dx dt 2U xd 

+ 461 
IY ||U(. s)IIL (R2) ds. 

Thus, by Gronwall's inequality we obtain for tN ? t ? tN+1 

(4.3) ||U, X t)IIR (R2) < eC /p IIpUL (R2) + p2 (h/6 + h6/6) 

This proves by (3.2) the existence of positive constants c and ao0, independent of p 
and h, such that 

(4.4) sup ||U(, t)lL+(R2) <C if 4 < p < chpR. 

Further, there is a constant C, independent of q and h, such that all v e Vh satisfy 
the inverse estimate 

(4.5) llIIvlLOp(R2) ? (Cqh )e / jjvejLq(+2) 1 <h q < ooD, 

which is proved analogously to Lemma 4.1. Finally, using (4.4)-(4.5), we have 

IlUh4lL4 (R) = lUitL ,(RL ) ? C(ph2 ) /C i SUp4|U(, ,t)IL(R2) 

t>O~~~~~~~~> 

< Cexp(c(1 + aeo)h&o ln 1/h) ? C, 

for h sufficiently small, which completes the proof of Lemma 3.1. 

5. Proof of Lemma 3.2 (The Entropy Condition). To prove Lemma 3.2, 
we first note that by Lemma 3.1 the solutions Uh of (3.1) are uniformly bounded 
in , t LO-norm, so that by Theorem 2.1 there exists a subsequence {Uh} which 
converges in the weak-star topology in Lo (Ri), and the limit can be represented 
by a family of probability measures vm such that for all continuous state vari- 
ables g 

(5.1) g(Uh(y)) (ph1 2(R)) 

Our next step is to prove that the Young measure v is an admissible my solution, 
i.e., that v satisfies in the distribution sense 

(5.2) <t (voX A)+ >E y-Iv9 fi(A)) =O 

and for all convex entropy pairs (ri, q) 

(5.3) g ( Uy h (A)) + E )(vy, qi(A)) <0. 

i=1 
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To prove (5.3), let (ri, ql, q2) be a smooth convex entropy pair. Let 4 E 

&?o??(R2x R+), 4 > 0, and partition 4 as follows: 

4) = + p, 

where ,(p > 0, $ E F0'(QR+2,) and p E Fo?(R2 x R+\QR+M). Taking 
v = 7r(r1'(U)q) in (3.1), we get 

0= fL(U))'o dx dt + (U+-U_ )q 0 dx 
Sn Rn 

-|f L(U)(71'0q- 7r(1'0)) dx dt - (U+ - U)(rq'q - 7r(iq'q))+ dx 
Sn Rn 

1 L (U) t + q ft(, ) x) dx dt 

- 6 L(U) t - 7r(7 7)t + 7 f( - 7r( '))xs) dx dt 

+ E1 (U)VU V7r(r (') dx dt + j 2 (U)VIU VI 7r( q'q) dx dt E8 n 

Integrating by parts and summing over n, we have 

ISN (r1()t+Eqi(U)Ox,i dxdt 

(5.4) 

+ E JR ((U_) 0 dx - (- r (U+) -(U+ U_)r1'(U+)) dx) 

N 8 8 

=- ZE~ZE R2. 
n=O i=3 i=3 

Using now the convexity of r1, we see that the sum of the integrals over R2, R +1 
is nonnegative. 

PROPOSITION 5.1. There holds 

8 

lim inf E R? > 0. 
i=3 

PROPOSITION 5.2. There are positive constants c, C such that 

IIUIIL.(R2XR+\QR+1 M) < Ce?cl 

where 1? = {Ixl: x E suppuo} and M is a positive constant to be defined below. 
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We postpone the proofs of these results to the end of this section. From (5.4) 
we get 

8 

? - R -] ((U)pt+Eqi(U)) dxdt 
(5.5) i=38 

i=3 IZR N -f (0 )t+ qi(O)pxj dxdt 
i=3 

N 

+ f (,r(0)-,(U))pt +(qi(?) - qi(U))Px,) dxdt, 

where the first integral on the right-hand side is zero and the second tends to zero 
as h -O 0 by Proposition 5.2. Letting h -- 0 in (5.5), using (5.1) and Proposition 
5.1, we now obtain (5.3). 

In order to treat all convex continuous entropies 71, we observe that a standard 
regularization q6 = * w maintains the convexity, and q1', qg tend to 71, qj uni- 
formly. Here, w satisfies the following conditions: 

W E o >(-1, 1)) w ?0, dy = 1, w6(y) = ey W (E)- 

By dominated convergence applied to (5.3) with r 1 -1 we then obtain (5.3) in 
the general case. Next, by taking 71(A) = ?A in (5.3) we get (5.2), thus proving 
that v is an admissible mv solution. 

It remains to prove the propositions. We shall estimate the Rt using the estimates 
(3.3)-(3.6) and the LOO-estimate in Lemma 3.1. We have 

1R31 + 1R61 < Ch(h + 6) E f IL(U)I I|/ q$IIW2,. dxdt 
KETh 

< Ch(h + 6) Z I IL(U)I(IVUI2 + IVUI + 1)11qIIW2,-(K) dxdt 
KEThK 

< J-| ei(U)IVU12 + Ch(h + 6)IIL(U)11L2(SN) 
6 N 

<c(^+hv4). 

Using also Lemma 4.1, we have 

N 

JR41 < E E Ch2 f U+ - UI(IVxUI2 + IVXUI + 1)11q1IW2,.(K) dx 
n=O KETh/l KnRn 

? Chf U|IVzUI2dxdt + Ch / ( ||U+ UIIL2(R2)) 

?C(- +h3/2). 
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Further, 

R5 = E L(U) 21 (U)qt!dzdt +f L(U) OtE +EZiRx) r1(U)dxdt 

> -Cb IIL(U)||L2 (SN) > C 

To estimate R7 and R8, we shall use the following result. 

PROPOSITION 5.3. We have 

Ut(1r('7(U)))t > O, VxU Vx(lr('q(U))) > O. 

Proof. We see that Ut(ir(ri'(U)))t is constant on each tetrahedron K E Th. 
According to the construction of the tetrahedrons K, there is for each K an or- 
thogonal coordinate transformation in the zX, X2-plane such that K always has 
one edge in each coordinate direction. Hence, let (Xl, X2, t), t' < t < t' , be 
such an edge of K; then the sign of Ut7r(71'(U))t is equal to the sign of 

(U(Xl,X2,tl) - U(Xl,X2,t'))(q7(U(XlzX2,t')) -q7(U(X,Z2,Xt2))), which is non- 
negative since 71' is nondecreasing. An analogous argument in the X7 directions will 
then, after summation, complete the proof of Proposition 5.3, since Vxv Vxw is 
invariant under orthogonal coordinate transformations. O 

Let 9PI K E Po(K) VK E Th be defined by 

(5.6) YPI K = I d / (K dzdt) Vp E L2(R) 

i.e., 9'p is the L2-projection of p onto the set of piecewise constants. Then using 
(5.6), we have 

R= fE (U)VU V - w(rAq'Y 0)) dx dt 
KETh 

KCSN 

+ Elf (U)VU Vir(rq',90) dx dt I + II, 
KETh 

KCSN 

III C E 1 El(U) IV(rT'(q - I L.(K)1VUl dxdt 
KETh 

KCSN 

< C E f El(U)(hIVU12 + IVUI) HVqHL.(K) dxdt 
KETh 

KCSN 

< Ch /N e(U) IVU12 dx dt + C El(U)jVUj2 dxdtjEl(U)1Lo(sN) ) 
SN SN 

? C(h+ /h1), 

where we have used that 

-1 (I-9)01L,(K) < ChjVq11L.(K) 

and the inverse estimate (3.6) to obtain 

11El(U)11LO(R3) < C6/h 
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Next, by Proposition 5.3, and since .?7 is piecewise constant, we have 

\ II = z K V ((U)VU ir(iV')). ( qdxdt > 0, 
KET K 
KCsN 

so that 
R7 > -C(h + Vl/h). 

Finally, 

R = E f62 (U)VxU U - rx(X 7r (rq'Y"q))) dxdt 
KEThK 
KCSN 

+ i I e2(U)VxU Vx7r('l90) dx dt III + IV. 
KETK 
KCSN 

As above, we get by Lemma 4.1 
N 

1111 < Ch Z J IUIVxU Vx(r( (0-,9))) dx 
n=O n 

N 

? Ch 1 IVU jVx( i1|U| -,)) | (I IL- )) Ld(KnR2) dd 
1. ~~~~~~~~~~~~n 

KETn n=O 
KCSN 

? C5 I I X' | U| IV UI(7 (+ IV-XU ))I VIL,O,(K) dxdt 
KETn 
KCSN 

? Chj e2(U)V XU12d~d +0 (jIVU1XUIxtIe()I ) / 

? ct5 E j 1f(h ITVX(irL( (K) dxdt 
KETn K 

KC KCS 

< C(h + 

Finally, by Proposition 5.3, 

IV = |62 (U) VxU Vx(7r (?'(U))),9 0dx dt >- O. 
KEThK 

Letting now h -O 0 in the above estimates, we obtain Proposition 5.1. o 
Proof of Proposition 5.2. Let us introduce the cutoff function 

{ 1 iffB(R+1-lxl)+t <O, 
exp(-( (IR + 1- lxl) + t)/r) otherwise, 

where 
1 =8 sup (Ifl(w)I,If2(w)I) 

IWI<IlUh |I OO 
fl( )II 

h>O 

and 
T =C(h+6+6+6/h), 
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where C is a sufficiently large constant. We now take M = 1/1 in the definition of 

Vh,. Further, we note that 41 RV\2A+l M = 1 and 0 is exponentially decreasing in 

QR+1,M. We then have for U = Uh and N = 1, 2,3,... the following local stability 
result: 

SN~~ 

[+,U2 bx+f(U+ _ U_)2~k 

(5.7) + (L (U))U20dx dt + f e(U)JVUJ2,ibdxdt 

+ f 2 e(U) JV'UJ2Udxdt ? CfU2/i dx. 

A similar stability estimate is proven in Theorem 1.2 of [4]. Since uo E Lo (R2) 

and suppuo C {x: Ixj < R}, we obtain from (5.7) 

f U2 dx < Cre 
R2N 

so that by the inverse estimate (3.6b), 

IIUIIL((R3 1 nt<T} - he 

which is the desired result. O 

6. Proof of Lemma 3.3 (The Initial Condition). Here we prove that the 

Ll-stability (2.8) and the initial condition (2.9) are satisfied. First we note by 

the definition of Vh that (v(,,t), JAl), i.e., the Loo weak-star limit of IUh (x, t) I, has 
support in QR+2,M (i.e., compact support in x for fixed t). Next, by the following 

L2-stability, 

(6.1) IIUh( ,t)11L2(R2) < exp(Ch/6)IIuoIIL2(R2), 

which is obtained from the stability estimate (3.3) by a Gronwall inequality as in 

(4.3), we get 

(6.2) IUh(. ,t)IILl(R2) < CIIUOIIL2(R2), t < T. 

Now using that g(Uh(x, t)) - (v(,t), g(A)) in the Loo weak-star topology for every 
continuous state variable g, we obtain from (6.1) and (6.2) 

(6.3) J (v,,t), A2)dx < J u2 dx a.e. t E (O, T) 
R2 R2 

and 

I (v(,x,t), XA) dx <C a.e. t E (O,T), 

which proves (2.8). 
To prove (2.9), we shall use a technique (see [1]) which involves the following 

weak convergence and the L2-stability (6.3): 

PROPOSITION 6.1. For 0 E ol({x E R2: lxi <I? + 2}) we have 

limn I (v(x,t), A) 0dx u 0 dx. 
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We postpone the proof of this result to the end of this section. Assuming first 
that uo E Fo1(R2) and suppuo C {x E R2: IxI < R}, we have with the aid of 
Proposition 6.1 and (6.3), 

lim supI (vJ(,t), (A - Uo)2) dx 
t -- R2 

(6.4) = limsSupJ (v(X,t), A2 _ - 2uo(A - uo)) dx 
t--O R2 

<-2 lim sup I (vI(,t), A - u0)uo dx = 0. 

Further, by using that (v(,,t), IA - uol) has its support in QR+2,M and Jensen's 
inequality, we get 

limsup (v(x,t), IA - uo(x) ) dx 
(6.5) 

t 
R21/2 

< C lim sup (I (v(x,t), (A - u0)2 ) dx) = 0, 

which proves the initial condition (2.9) for regular initial data. In the more general 
case uo E LOO(R2) with suppuo c {x E R2: lxl < R}, we let the functions fn satisfy 

fn E 1ol (R2), supp fn C {x E R2: lxl < R} and limn,oo llfn-UoIIL2(R2) =0, and 

use (6.3) and Jensen's inequality to obtain 

lin| (IR (v,t),(A -u) dx = lim limJ (x, tI(A -fn)2) 

Now, as in (6.4) we have 

ii 
lit oR(v'(x,t),I (A fn)2) dx = O, 

so that 

lim suP (v(x,t), IA - uo l) dx < lim C (IR V(t)2 I (A - Uo) ) dx) = 0. 

We now turn to the proof of Proposition 6.1. Let q E 1ol(R2), suppq$ C {x E 
R2: lxl < R}, / E eol Q([0T)), f (0) = 1 and take v = ir(q$b) in (3.1). Letting then 

h tend to zero, we obtain as in (5.2) 

+ I| (v(x,t), A) dx Vkt dt 

(6.6) R~+ R2 
(6.6) I ((V(X,) I)fi (A)) ,) d) $ dt + I uo5 dx = 0. 

Further, we define the functions A, B E Loo((0, T)) by 

A(t) = (v(,t),A)0(x)dx, B(t) = R (v(Z,t)I fi(A)) O,(x)dx. 

Since vy is a measure-valued solution, we have At + B = 0 in the sense of distribu- 

tions on R+. We note that B E L1((O,T)), which implies At E L1(0,T). Hence, A 

has bounded variation and limt,o A(t) exists. Taking now 

(( nt) t < 1/n, 
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in (6.6), we get 

f uoO dx=- lim A(t)(Vb,n) t dt = lim A(t), 
JR2 n?-o JR2 t -+0 

which proves the proposition. 
Remark 6.1. An alternative method to prove the initial condition (2.9) is to 

establish the strong L1 convergence 

lim I| Uh&(, t) - UO L,(R2) = 0 
t -0 

by using standard error estimates with respect to a solution having smooth initial 
data. This is possible, since for short times such a solution remains smooth. Using 
this method, we get (2.9) choosing also 6 = Ch. Recall that to obtain (6.3) we 
assumed h/l -* 0 as h -- 0, cf. Remark 6.2. 

Remark 6.2. The following argument, cf. [1], proves that Theorem 3.1 holds also 
for the case 6 = h. Analogously to (6.6) and (5.3), we obtain 

(6.8 I |R (V(x,t), A2)d dx V)t dt 

(6.8) ~+ || (((zX t): IVi (A))bs Ox dx V dt + l(1lo)20 dx > 0, 
R+ IRI2 2 +? 

where qi are the entropy fluxes corresponding to the entropy A2 and X, f are as in 
(6.6). Using now that v satisfies (5.3) with rj = A2 we note (cf. [1]) that the integral 

A(t) (I(x,t) A2)q(x) dx 

has bounded variation as a function of t and hence the limit limt,o A(t) exists. 
Taking now i) as in (6.7) and 0(x) = 1 for x E QR+2,M' we have by (6.8) 

lint (I(x,t),A2)dx < I (Uo)2 dx, 

which combined with Proposition 6.1 proves (6.4) and (6.5) as above. We thus 
conclude that Lemma 3.3 holds also for 6 = h. 

7. Error Estimates for the SC-Method. In this section we prove that the 
SC-method applied with piecewise polynomials of order k to the linear problem 

d 

(7.1) L(u) -Ut +Zazuxi = 0 in Rd x R+, 

u(.,0)=uo onRd, 

with smooth solution has essentially the same order of convergence as the corre- 
sponding streamline diffusion finite element method (see [4]) obtained by choosing 

El = 62 = 0 in (3.1), i.e., &(hk+1/2). Introducing the bilinear form 

BM(v, w)= S L(v)(w + 6(L(w))) dx dt 

+ IRd (v+ - v)w+ dx + V+W+ dx, 
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the SC-method for (7.1) can be formulated, now with Vh consisting of piecewise 
polynomials of degree k: Find U E Vh such that for M = 0, 1, 2,.... 

BM (U, V) + J ei(U)VU. Vv dx dt + J E2(U)VzU V.vvdxdt = J uov+ dx, 

with e1 and 62 as in Section 3. For the quantity e = U - 7ru E Vh, we have 

BM(e, e) + j el(U)lVeI2 dx dt + f 62(U)IVseI2 dx dt 

(7.2) = BM(u - 7ru,e) - j el(U)V(7ru) Vedxdt 

-|ISM e2(U)Vw7ru V.edxdt 

_ I+II+III. 

Now 

BM(e,e) = 2(l + II|e+ -e-IIeL2(Rd)+ I!e+IIL2(Rd)) 

(7.3) 
2 

+)n=l1 

+ 6 (L(e))2dx dt, 

and with the notation r = u - 7ru, we have 

M+1 

I = BM( e) < 2B(e, e) + E llL2 (Rd) 

n=l 

+ 6-1 IIII2 (SM) + 6IIL(r)II12(SM) 

Further, by (3.6), 

II < | (L(U 2(6) L IV(ru)I2IVe2 dxdt 
8 SM 6 M 

(7.5) < f (L(e))2 dx dt + - J(L(7ru))2 dx dt 

+ C 6 )2IIVUII f e2dx dt, 

and finally, by Lemma 4.1, 

III < 
-JM dxfdt + Ch6 IVxru2IVxeI2 dxdt 
h M SM 

(7.6) 1 M=,2 
< ( E IIe+ - e-1L2(Rd) + CilIV7rUII2 L e2 dx dt. 

Combining now (7.2)-(7.6) and the interpolation estimate (3.4), with Vhn now 
consisting of piecewise polynomials of degree k > 1, we get for u E H2 (SM) n 
W1?*?(SM) 

BM(e, e) < Ch2k(6 + h2/6) + Cf e2 dxdt. 

Thus by a Gronwall argument, as in (4.3), we have 

BM (e, e) < Ch2k(6 + h2/6). 
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Using now (3.4), this proves that for M = 1, 2, 3.... 

M 

II(U _U)_I12(Rd + Z IIU+ U-112(Rd) 
(7.7) 1n= 

+ II(U _ 
Uo)+12(Rd) + 6j (L(U))2 dxdt < Ch2k(& + h2/6), 

which for 6 = Ch gives the accuracy (hk+l/2). 

Remark 7.1. Following [4], we easily get local error estimates corresponding to 
(7.7) away from regions where the exact solution is nonsmooth. 
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